
Keivan Damirchi

With One-line Descriptions

LINQ Methods
40



Improved performance and scalability by 

separating read and write responsibilities

Returns the common elements between 
two sequences.

1

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

Intersect

Filters a sequence to only include elements 
of a specified type.

OfType

Returns the elements in the first sequence 
that are not in the second sequence.

Except

Generates a sequence that repeats a 
specified value a specified number of 
times.

Repeat



Improved performance and scalability by 

separating read and write responsibilities

Performs a secondary sort on a sequence 
based on a key.

2

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

ThenBy

Creates a lookup table from a sequence 
based on a key.

ToLookup

Returns the element at a specified index 
in a sequence.

ElementAt

Generates a sequence of integers within a 
specified range.

Range



Improved performance and scalability by 

separating read and write responsibilities

Returns the unique elements in a sequence.

3

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

Distinct

Returns an empty sequence of a specified 
type.

Empty

Performs a left outer join on two sequences 
based on a key and groups the results.

GroupJoin

Returns a default value if a sequence is 
empty.

DefaultIfEmpty



Improved performance and scalability by 

separating read and write responsibilities

Filters a sequence based on a condition.

4

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

Where

Returns the distinct elements from two 
sequences.

Union

Projects each element of a sequence into 
a new form.

Select

Returns the number of elements in a 
sequence.

Count



Improved performance and scalability by 

separating read and write responsibilities

Sorts a sequence in ascending order 
based on a key.

5

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

OrderBy

Concatenates two sequences.

Concat

Returns the first element of a sequence.

First

Returns the element at a specified index 
in a sequence or a default value if the 
index is out of range.

ElementAtOrDefault



Improved performance and scalability by 

separating read and write responsibilities

Returns the first element of a sequence or 
a default value if the sequence is empty.

6

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

FirstOrDefault

Returns the last element of a sequence.

Last

Returns the last element of a sequence or 
a default value if the sequence is empty.

LastOrDefault

Returns the only element of a sequence, 
or throws an exception if there is not 
exactly one element.

Single



Improved performance and scalability by 

separating read and write responsibilities

Returns the only element of a sequence, or a 
default value if the sequence is empty or if there is 
not exactly one element.

7

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

SingleOrDefault

Returns a specified number of elements 
from the start of a sequence.

Take

Returns elements from a sequence while a 
condition is true.

TakeWhile

Skips a specified number of elements in a 
sequence.

Skip



Improved performance and scalability by 

separating read and write responsibilities

Skips elements in a sequence while a 
condition is true.

8

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

SkipWhile

Computes the sum of a sequence of 
numeric values.

Sum

 Performs a secondary sort in descending 
order based on a key.

ThenByDescending

Returns the minimum or maximum value 
in a sequence of numeric values.

Min, Max



Improved performance and scalability by 

separating read and write responsibilities

Creates a dictionary from a sequence of 
key-value pairs.

9

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

ToDictionary

Determines whether any element of a 
sequence satisfies a condition.

Any

OrderByDescending method is used to sort 
the data in Descending order.

OrderByDescending

Reverse method is used to reverse the 
data stored in a data source. 

Reverse



Improved performance and scalability by 

separating read and write responsibilities

Determines whether all elements of a 
sequence satisfy a condition.

10

Better separation of concerns, allowing for more 

modular architecture

Ability to optimize read and write models for 

their specific use cases

All

Computes the average of a sequence of 
numeric values.

Average

Contains Method is used to check 
whether a sequence or collection (i.e. data 
source) contains a specified element or 
not.

Contains



Close();

Keivan Damirchi


